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ABSTRACT: This study estimates the random error variances and standard deviations (STDs) for four datasets: Global

Hawk (GH) dropsondes (DROP), the High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer

(HAMSR) aboard the GH, the fifth European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis

(ERA5), and the Hurricane Weather Research and Forecasting (HWRF) Model, using the three-cornered hat (3CH)

method. These estimates are made during the 2016 Sensing Hazards with Operational Unmanned Technology (SHOUT)

season in the environment of four tropical cyclones from August to October. For temperature and specific and relative

humidity, the ERA5, HWRF, and DROP datasets all have similar magnitudes of errors, with ERA5 having the smallest.

The error STDs of temperature and specific humidity are less than 0.8 K and 1.0 g kg21 over most of the troposphere,

while relative humidity error STDs increase from less than 5% near the surface to between 10% and 20% in the upper

troposphere. The HAMSR bias-corrected data have larger errors, with estimated error STDs of temperature and specific

humidity in the lower troposphere between 1.5 and 2.0K and between 1.5 and 2.5 g kg21. HAMSR’s relative humidity error

STD increases from approximately 10% in the lower troposphere to 30% in the upper troposphere. The 3CHmethod error

estimates are generally consistent with prior independent estimates of errors and uncertainties for the HAMSR and

dropsonde datasets, although they are somewhat larger, likely due to the inclusion of representativeness errors (differences

associated with different spatial and temporal scales represented by the data).
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1. Introduction

NOAA’s Sensing Hazards with Operational Unmanned

Technology (SHOUT; Dunion et al. 2018; Wick et al. 2018a,

2020) program during 2015–16 was designed partially to eval-

uate the effectiveness of the NASA unmanned aerial systems

(UAS) Global Hawk (GH) on tropical cyclone (TC) predic-

tion. Several sensitivity studies since this campaign have eval-

uated the impact of the high-altitude dropsonde observations,

showing added value for both track and intensity metrics in

global and regional modeling systems (Christophersen et al.

2017, 2018a,b; Kren et al. 2018). Additional studies are un-

derway to obtain more robust statistics on the overall value of

the GH dropsondes (Wick et al. 2020). These periods include

years when SHOUT partnered with other field campaigns

targeting TCs: flights in 2012–14 during the Hurricane and

Severe Storm Sentinel (HS3; Braun et al. 2016) campaign and

in 2017 with the Eastern Pacific Origins and Characteristics of

Hurricanes (EPOCH; Emory et al. 2015) program.

In addition to dropsondes, theGHprovides a suite of remote

sensors to probe the hurricane environment and TC core. One

of these sensors is the High-Altitude Monolithic Microwave

Integrated Circuit Sounding Radiometer (HAMSR; Brown

et al. 2011). HAMSR measures microwave radiances over

25 spectral channels at a high temporal (1.1 s) resolution and

a ;2 km vertical resolution. These radiances may be used to

retrieve temperature and water vapor profiles in the clear or

cloudy TC environment. A few preliminary studies have ex-

amined the impact of usingHAMSRdata in numerical weather

prediction (NWP) models (Wick et al. 2020). However, the

impact has been mixed, and the assimilation of the HAMSR

retrievals is likely far from optimal.

Knowing the error characteristics, including the uncertainty,

of any observational or model dataset is of critical scientific

importance. Estimating the uncertainty, or random errors, is

also important for applications of any dataset, including risk

assessment and decision making. Thus, users of observational

or model datasets should be aware of the errors in the data,

while developers of observational systems or models need to

know the error characteristics of their data in order to validate

and improve their products (reduce the errors). Correct error

characterization is vital for proper data assimilation into NWP

models (Desroziers and Ivanov 2001).

Current work is underway to assimilate HAMSR temper-

ature andmoisture retrievals into the Hurricane andWeather

Research and Forecasting (HWRF)Model as part of a SHOUT

follow-on study to make better use of the remote sensing data

aboard theGH. To our knowledge, no prior work has been done

to accurately characterize the error variance of the HAMSR

retrievals. In addition, a thorough examination of the errors

of dropsondes released from the GH has yet to be carried out

(Wick et al. 2018b).

This paper estimates the errors of the GH dropsonde

and HAMSR datasets, as well as two model datasets

(HWRF and ERA5) during the SHOUT campaign using the
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‘‘three-cornered hat’’ (3CH) method (Gray and Allan 1974;

Anthes and Rieckh 2018; Sjoberg et al. 2021). In the 3CH

method, random error variances and standard deviations

(STDs) of three or more independent collocated datasets are

estimated simultaneously by forming differences between

combinations of the three datasets, which can be models or

observations. An important requirement for the accuracy of

the 3CH method is that the random errors of the datasets be

uncorrelated, or have small correlations (Rieckh and Anthes

2018; Sjoberg et al. 2021). Brief and preliminary results from

this study were reported in Wick et al. (2020).

Section 2 summarizes the four datasets used in the error es-

timations. Section 3 summarizes the 3CH method and section 4

compares the 3CH error estimates with other error estimates.

Section 5 presents the conclusions.

2. Datasets

We estimate the errors of the four datasets from August

through October 2016 in the environment of TCs. The year

2016 is chosen due to the prevalence of GH dropsonde de-

ployments and HAMSR retrievals during SHOUT. Four TCs

were sampled during this period over the Atlantic Ocean:

Gaston, Hermine, Karl, and Matthew. The HAMSR retrievals

in 2016 were bias corrected by comparing to GH dropsondes

[S. Brown, NASA’s Jet Propulsion Laboratory (JPL), 2020,

personal communication] and thus are of higher quality than in

prior flight missions.

a. ERA5

ERA5 is the latest global reanalysis produced by the European

Centre for Medium-Range Weather Forecasts (ECMWF;

Hersbach et al. 2018). It replaces ERA-Interim and contains

improvements relative to past reanalyses. The current period

of ERA5 runs from 1979 to the present and contains hourly

estimates of atmospheric, land, and ocean variables at a 31-km

horizontal resolution. In the vertical there are 137 hybrid sigma

levels from the surface to 80 km (0.01 hPa), with atmospheric

variables interpolated to 37 pressure levels. While the resolu-

tion of ERA5 is not sufficient to properly describe the inner

region of TCs, it is used as an additional dataset to characterize

HAMSR errors.

ERA5 assimilates many types of conventional and satellite

observations, but it does not assimilate HAMSR observations,

so any error correlations between ERA5 and HAMSR is

likely small. However, ERA5 does assimilate GH dropsondes

and thus there may be some correlation between ERA5 and

dropsonde errors. However, there are many more observa-

tions going into the analysis than this one dataset alone, so

that the correlations of ERA5 and dropsonde errors is as-

sumed to be small.

b. HWRF Model

HWRF is a nonhydrostatic, coupled atmospheric–ocean

model, employing the dynamical core of the Weather Research

andForecasting (WRF)mesoscalemodel (Gopalakrishnan et al.

2011; Tallapragada et al. 2014). It contains one parent domain

with size of 77.28 3 77.28 centered on the TC initial position, and

two smaller nested domains, with a horizontal resolution of the

three grids at 13.5, 4.5, and 1.5 km. HWRF contains output on

46 pressure levels from 1000 to 2 hPa. This study uses HWRF

analyses for the 2016 period that were generated from the 2017

version of HWRF, produced at the National Centers for

Environmental Prediction (NCEP) Environmental Modeling

Center (EMC). The HWRF analyses used in this study are

based on the NCEP Global Forecast System analyses, inter-

polated to the HWRF outer grid (13.5 km resolution); data

assimilation is also performed on the two nested domains to

produce an updated analysis at each time step.

HWRF and ERA5 are two different models with varying

resolution and physics. They both assimilate dropsonde ob-

servations from the GH, but HWRF does not assimilate all

observations (in both number of observations and types) as in

ERA5. Another difference between HWRF and ERA5 is that

HWRF assimilates inner-core dropsondes and assimilates

these at the correct location using dropsonde drift (Aberson

et al. 2017). This dropsonde drift correction in HWRF was not

operational for the 2016 cases discussed herein and thus

HWRF only assimilated the dropsonde data at a fixed location.

The correlation between the errors in these datasets is likely to

be small. However, HWRF errors may be correlated with the

dropsonde errors.

c. GH dropsondes

The dropsondes (DROP) released from the NASA GH

measure pressure, temperature, and relative humidity at 2Hz,

as well as wind speed and direction at 4Hz. The temporal

resolution roughly corresponds to a vertical resolution of 6m

for pressure, temperature, and humidity and 3m for wind

speed and direction (Wick et al. 2018b). The GH dropsonde

observations were retrieved from https://www.esrl.noaa.gov/

psd/psd2/coastal/satres/data/static/shout/2016_HRR.html. The

dropsonde observations used here are the full resolution data,

as opposed to theBinaryUniversal Form for theRepresentation

of Meteorological Data (BUFR) format, which includes simply

mandatory and significant levels assimilated in global and re-

gional models (Aberson et al. 2017). Prior to the start of the

2016 hurricane season, a systematic dry bias was found in the

GH dropsonde moisture observations. This bias was corrected

prior to the four hurricanes that were sampled in this study (G.

Wick 2019, personal communication). Last, the dropsonde drift

is not accounted for in the collocation procedure discussed in

section 2e. The maximumdrift is estimated to be less than 15km

(Chan et al. 2018) and thus the error introduced by its neglect in

the collocation is expected to be negligible.

d. HAMSR retrievals

The HAMSR cross-track scanning atmospheric sounder

designed at JPL contains 8 sounding channels near the 60-GHz

oxygen line complex, 10 channels near the 118.75-GHz oxygen

line, and 7 near the 183.31-GHz water vapor line (Brown et al.

2011). Retrieval products of temperature and absolute humidity

profiles are obtained using a one-dimensional plane-parallel

radiative-transfer model. The first guess, or background, is de-

termined using radiosonde profiles that are near the GH flight

paths, as well as climatology (Brown et al. 2007). The resultant
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retrievals are generated at a horizontal resolution of ;2 km

(from an altitude of 20 km at nadir) and output every 1.1 s. The

cross-track swath spans 458 from nadir, a roughly 45 km swath

width at 20 km altitude. The HAMSR data used the GH

dropsonde data in a bias-correction process, using coincident

dropsondes released from drone aircraft. The average differ-

ence betweenHAMSRand the dropsondes from all flights (not

only the ones used in this study) was used to remove the bias in

HAMSR retrievals [S. Brown, NASA’s JPL, 2020, personal

communication]. Since this bias correction procedure pos-

sibly introduced some correlation of errors between the

dropsonde and HAMSR data, we also estimated the errors

of the HAMSR retrievals without bias corrections (denoted

HAMSR-NC). This uncorrected HAMSR dataset contained

a few profiles which appeared to contain large errors (out-

liers), and so these were eliminated in our 3CH estimates.

For these two HAMSR datasets, we included all scan angles.

We also estimated the STD of errors of the uncorrected

HAMSR data, but restricted the sample to those with scan

angles less than 308 (denoted HAMSR-30), which are gen-

erally more accurate than those with larger scan angles

(Brown et al. 2011). The variation in horizontal location of

the HAMSR soundings with altitude for off-nadir scan an-

gles is neglected in the collocation procedure. For a 308 scan
angle, the maximum displacement from 16 km altitude is

8 km, and the error due to neglect of this displacement is

expected to be negligible.

Neither ERA5 nor HWRF assimilates HAMSR opera-

tionally, making any correlation of errors between these

datasets small. There may be some correlation of errors

between the HAMSR bias-corrected retrievals and DROP.

The HAMSR uncorrected retrievals were downloaded from

https://www.esrl.noaa.gov/psd/psd2/coastal/satres/data/static/

shout/2016_HRR.html, while the HAMSR bias-corrected

data were received directly from Shannon Brown at JPL during

the SHOUT campaign.

e. Colocation of the datasets

The 3CH method requires that all datasets be collocated to

the same time and location; here we collocated the ERA5,

HWRF, and HAMSR datasets to the dropsonde locations and

times at release. Figure 1 shows the dropsonde release loca-

tions during the SHOUT 2016 season. There were a total of 634

dropsondes over the nine flight missions across the storms

Gaston, Hermine, Karl, and Matthew. HAMSR retrievals are

chosen that are within 60min of the dropsonde release time.

If vertical profiles are within this time threshold, we iterate

through the subset (irrespective of scan angle) and select the

profile that is closest in time and location to the dropsonde

release location and time. Figure 2 shows that the majority of

HAMSR profiles that satisfy these criteria are within 5min and

5 km of the dropsonde time and position. The reason for

varying distances of the HAMSR retrievals and the dropsonde

release locations and times (Fig. 2) is because HAMSR is not

continuously scanning at all times. In addition, the bias cor-

rected retrievals likely filtered out outliers from the raw data-

set, which led to fewer observations in close proximity to the

dropsonde release times and locations. Of the 634 dropsondes

released in or near the four TCs (Fig. 1), we found 533 collo-

cated datasets using the bias-corrected HAMSR data. When

using the uncorrected HAMSR data at all scan angles, the

elimination of 17 profiles with outliers reduced the collocated

sample size to 516, while restricting the HAMSR profiles to

those with scan angles less than 308 further reduced the sample

size to 513.

To determine where the collocated data are positioned in

relation to the TC centers, we interpolate the ERA5 sea level

pressure (SLP) to the time of the dropsonde release for all

collocations. The National Hurricane Center (NHC) best track

dataset (HURDAT2) of each tropical cyclone is then used to

match the best track date that is closest to the dropsonde re-

lease date. This date gives an initial estimate of the position of

the TC center at each dropsonde release. Using the ERA5

interpolated SLP field, then, we find the minimum SLP within

6158 latitude and longitude of the best track estimated position

to designate the storm center. The great circle distance be-

tween the storm center and the dropsonde location denotes the

distance from the TC center. The reason we use a combination

of ERA5 and HURDAT2 is because the dropsonde release

times do not always coincide with the best track 6-houly

analyses.

Figure 3a shows a histogram of the distance between the

dropsonde locations and the TC centers. There is spread in the

location of the dropsondes relative to the storm center, with

several sampling the larger environment over the Atlantic

Ocean. The vast majority of the dropsondes, however, are

within 400 km of the TC center. Figure 3b shows an example of

an ERA5 interpolated SLP field, valid at the dropsonde time of

0617 UTC 27 August 2016 during Gaston. The position of the

dropsonde is denoted by the red circle in the northeast quad-

rant of Gaston.

Once the dropsondes andHAMSR retrievals are collocated,

ERA5 temperature, specific and relative humidity are inter-

polated linearly in time and bilinearly in space to the drop-

sonde release times and locations. The dropsondes and ERA5

reanalysis are vertically interpolated to the 25 pressure levels

of the HAMSR data: 100, 150, 200, 250, 300, 350, 400, 450, 500,

550, 600, 650, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925,

950, 975, and 1000 hPa. The HWRF analysis products, which

FIG. 1. Dropsonde release locations during the SHOUT 2016

season. The different colors (marker styles) denote different flight

missions over the four storms sampled (nine total).
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are provided every 6 h, are also interpolated linearly in time

and bilinearly in space to the dropsonde times and locations.

The variables in HWRF exist at the pressure levels of the

HAMSR data, so no vertical interpolation is needed. Since the

dropsondes and HAMSR do not contain specific humidity di-

rectly, this variable is derived from the corresponding tem-

perature, relative humidity, and pressure observations. Specific

and relative humidities are provided in both the ERA5 and

HWRF datasets.

To reduce sampling errors, a double-differencing spatial–

temporal correction, as described in Gilpin et al. (2018), is ap-

plied to theHAMSRprofiles. For example, the spatial–temporal

corrected difference XSC of a variable X between the HAMSR

and DROP observations is computed as

XSC 5X
HAMSR

2X
DROP

2 (XERA5
HAMSR 2XERA5

DROP) , (1)

whereXHAMSR is theHAMSRprofile closest in space and time

to DROP, XERA5
HAMSR is the ERA5 profile interpolated to the

HAMSR time and location, and XERA5
DROP is the ERA5 profile

interpolated in space and time to the dropsonde.

We compute the estimated errors of the 533 collocated

datasets as well as the errors of the datasets normalized by the

ERA5 mean profiles (averaged over the sample), similar to

FIG. 2. Histogram of the (a) time (min) and (b) distance (km) separation of HAMSR retrieval profiles from the

dropsonde release time and location.

FIG. 3. (a) Histogram of the distance between the dropsonde release location and the tropical cyclone storm

center using ERA5 sea level pressure (SLP) observations and NHC best track data. (b) Example ERA5 SLP

interpolated to the dropsonde time for 0617 UTC 27 Aug 2016. The location of the dropsonde is shown in the red

dot for the Hurricane Gaston case.
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Anthes and Rieckh (2018). These normalized error estimates

are comparable to the observation minus background

statistics commonly used by NWP centers. Figure 4 shows

the mean ERA5 profiles for the three variables. The

greatest variability in specific humidity is found below

300 hPa. For relative humidity, the largest spread exists in

the upper-levels between 200 and 600 hPa. Temperature is

much less variable. Figure 5 shows one example of tem-

perature, specific and relative humidity for the four data-

sets corresponding to the dropsonde release at 0031 UTC

27 August 2016.

3. Estimation of error variances and standard deviations

Once we have the collocated differences between the data-

sets, themethodology to estimate the error variance of the four

datasets closely follows that of Anthes and Rieckh (2018) and

Sjoberg et al. (2021). The error variance of a dataset X is de-

fined by

VAR
err
(X)5 h(X2X

True
2 b

x
)
2i , (2)

whereXTrue is the true (but unknown) value ofX, bx is the bias

of X with respect to XTrue, and the brackets denote the sample

mean. In the 3CH method, we use three linearly indepen-

dent equations to estimate the error variance of each dataset

by assuming that the error covariances among the datasets

are negligible compared to the mean-square (MS) differ-

ences between the datasets. For example, the three inde-

pendent estimates for the error variance for temperature,

specific and relative humidity, excluding the neglected error

covariance terms, for HAMSR are

VAR
err
(HAMSR)5

1

2
MS(HAMSR2ERA5)1

1

2
MS(HAMSR2DROP)2

1

2
MS(ERA52DROP)

2
1

2
[b2

HAMSR,ERA5 1 b2
HAMSR,DROP 2 b2

ERA5,DROP], (3)

VAR
err
(HAMSR)5

1

2
MS(HAMSR2ERA5)1

1

2
MS(HAMSR2HWRF)2

1

2
MS(ERA52HWRF)

2
1

2
[b2

HAMSR,ERA5 1b2
HAMSR,HWRF 2b2

ERA5,HWRF], (4)

VAR
err
(HAMSR)5

1

2
MS(HAMSR2DROP)1

1

2
MS(HAMSR2HWRF)2

1

2
MS(DROP2HWRF)

2
1

2
[b2

HAMSR,DROP 1b2
HAMSR,HWRF 2b2

DROP,HWRF], (5)

FIG. 4. ERA5 mean (solid line) and standard deviation (shading) of the 533 collocated profiles for (a) temperature (K), (b) specific

humidity (g kg21), and (c) relative humidity (%). The mean profiles are used in the normalizations of the differences between datasets

in the 3CH calculations.
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whereVARerr(HAMSR) denotes the error variance of HAMSR,

MS denotes the mean square difference of the two datasets, and

the b terms denote the mean biases between any two datasets

X and Y,

b
x,y

5 hX2Yi , (6)

where the brackets denote the sample mean. Similar equations

are derived for the estimated error variances of ERA5, DROP,

and HWRF.

In addition to calculating the error variance, we also calcu-

lated the root-mean-square (RMS) differences,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MS(X2Y)

p
, (7)

and the variance and STD of the differences between the

datasets,

VAR(X2Y)5MS(X2Y)
2 2b2

x,y, (8)

STD(X2Y)5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR(X2Y)

p
. (9)

The STD of the estimated errors is the square root of the es-

timated error variance of a variable X. Last, the means and

STDs of the three error variance estimates for each dataset

are calculated from

s5

�
1

2
�
n53

n51

(x
n
2 x)2

�1/2
, (10)

where xn denotes the nth error variance estimates and x is the

mean of the three estimates.

4. Results

a. Mean and STD of differences from ERA5

Before showing the estimated 3CH errors, Fig. 6 shows the

mean and STD of the differences of HAMSR, HWRF, and

DROP from ERA5 for temperature and specific and relative

FIG. 5. Sample profiles of (a) temperature (K), (b) specific humidity (g kg21), and (c) relative humidity (%) for the four datasets: ERA5

(blue), HWRF (green), HAMSR (red), and DROP (orange). All profiles are collocated to the dropsonde location release at 0031 UTC

27 Aug 2016.

FIG. 6. Mean (solid lines) and standard deviation (STD; dashed lines) of differences between HWRF (green), DROP (red), HAMSR

(blue), and HAMSR-NC (all scan angles, not bias corrected; orange) and ERA5 for (a) temperature (K), (b) specific humidity (g kg21),

and (c) relative humidity (%).
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humidity. Results indicate the bias and spread from the ERA5

profiles.

For temperature (Fig. 6a) over most of the troposphere, the

mean differences from ERA5 are within61K for the HWRF,

DROP, and bias-corrected HAMSR data. The mean differ-

ences of DROP and ERA5 are within 0.5K at all levels and

within ;0.7K for ERA5 and HWRF. The STDs between

HWRF, and DROP and ERA5 at all levels is roughly constant

at 1K. Larger spread exists in HAMSR–ERA5 differences,

which shows an STD between 1.5 and 2.3K.

Specific humidity mean differences fromERA5 (Fig. 6b) are

within 0.5 gkg21 for all datasets except the uncorrected HAMSR

data. The differences are greatest in the low-levels between 850

and 1000 hPa, with HWRF, DROP and HAMSR all moister

than ERA5, indicating a possible dry bias in ERA5 in this

layer. For STD, a similar picture as with temperature is found,

with greater spread between HAMSR and ERA5 relative to

DROP and HWRF.

Figure 6c shows the corresponding relative humidity dif-

ferences from ERA5. All datasets except the uncorrected

HAMSR data show mean agreement with ERA5 to within

5% from the surface to about 500 hPa. The mean differences

all become negative above 500 hPa, suggesting a moist bias

in ERA5. The STD shows that HAMSR once again has the

largest spread, between about 8% and 35%, while HWRF

and DROP are similar in magnitude of ;5% to 20%.

The HAMSR data without bias correction (orange profiles

in Fig. 6) show considerably larger biases and STDovermost of

the troposphere compared to the bias-corrected HAMSR data

for temperature and specific and relative humidity.

b. Estimated 3CH error variances and standard deviations

Here we present the estimated error variances and STD for

all four datasets of temperature, specific and relative humidity.

We present the error STD results for the three versions of the

HAMSR data, but focus on the bias-corrected HAMSR data

for all scan angles (the red profiles in Figs. 7 and 8). The esti-

mated error STD for the uncorrected data are larger and are

included for comparison in the figures, but are not discussed in

detail. The left panels of Fig. 7 shows the mean of the three

3CH error variances and their STDs of temperature, specific

and relative humidity. The right panels of Fig. 7 are the esti-

mated mean error STDs, with their STDs indicated by the

shading. The estimated error STDs are the square root of the

error variances (left panels). Where the estimated error vari-

ances are negative, as seen in the ERA5mean between 500 and

200 hPa and the HWRF and DROP relative humidities above

200 hPa, they are set to zero for the STD estimates. Small

negative error variance estimates for a dataset, which are

physically impossible, can happen when there are small error

correlations between that dataset and one or more of the other

datasets (Rieckh and Anthes 2018; Sjoberg et al. 2021). These

error correlations may be real, or a result of chance in a small

sample size such as in these calculations. Here we discuss only

the estimated error STD, because these are easiest to compare

with other estimates of errors.

The estimated error STD for temperature for ERA5,

HWRF, and DROP (Fig. 7b) exhibit a similar pattern and

magnitude, with all three datasets showing a mean error STD

of less than 0.8K throughout most of the troposphere. The

ERA5 error estimates are generally slightly smaller than those

of HWRF and DROP, averaging around 0.5K. HAMSR’s

estimated error STDs are noticeably larger compared to the

other three datasets (Fig. 7b), approximately 1.8 K throughout

most of the troposphere, but exceeding 2.2K at 200 hPa. The

estimated temperature errors are relatively constant with

height, likely because the temperature variability does not vary

greatly with height (Figs. 4 and 5).

Similarly, Fig. 7d presents the estimated error STD for

specific humidity. As with temperature, ERA5, HWRF, and

DROP show similar errors, less than 1.0 g kg21, with ERA5

exhibiting the smallest errors. HAMSR’s specific humidity error

estimates, similar to those of temperature, are larger, showing a

maximum of about 2.4 g kg21 at 800 hPa. The high value at this

level is likely related to the low vertical resolution of the

HAMSRdata in a region where there is large vertical variability

of specific humidity, as indicated by the example profiles shown

in Fig. 5. All of the datasets show a decrease of specific humidity

errors above about 800 hPa because of the rapid mean decrease

of specific humidity above this level (Fig. 4).

The error STD of relative humidity for ERA5, HWRF, and

DROP (Fig. 7f) increase slowly from about 5% at the surface

to 10% at 400 hPa. HWRF and DROP remain at 10% above

this level, while ERA5 shows an increase, reaching amaximum

of about 20% at about 250 hPa. In comparison to these three

datasets, HAMSR shows over twice the error STD of the other

datasets between 1000 and 200 hPa. All four datasets above

150 hPa show large spread and much different error STDs; this

could be related to the small amounts of moisture at these

levels and consequently the large uncertainties in estimates of

relative humidity errors.

The HAMSR data before bias correction (purple and gray

profiles in right panels of Figs. 7 and 8) show considerably

larger estimated error STD over most of the troposphere

compared to the bias-corrected HAMSR data for temperature

and specific and relative humidity, indicating the overall higher

quality of the bias-corrected HAMSR data. As expected, the

uncorrected HAMSR data with scan angles restricted to #308
are more accurate than the data that includes all scan angles

(Brown et al. 2011).

Figure 8 shows the corresponding mean error variances and

STDs of temperature, specific and relative humidity normal-

ized by the ERA5mean profiles. For temperature (Fig. 8b), the

pattern of the STD is similar to that shown in Fig. 7b. ERA5,

HWRF, and DROP exhibit errors generally less than 0.2% up

to 300 hPa, and up to 0.4% above this level. HAMSR errors are

larger, around 0.5% at the surface, increasing to a maximum of

about 1% at 300 hPa.

The estimated error STD of normalized specific humidity

(Fig. 8d) are very similar for ERA5, DROP, and HWRF in

the lower troposphere, increasing from about 5% at the

surface to about 15% at 500 hPa. Above 500 hPa, the DROP

specific humidity errors are somewhat larger than the ERA5

and HWRF errors. The estimated HAMSR errors in the

normalized specific humidity are about twice those of the

other datasets.
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FIG. 7. Estimated error variances using 3CH method for (a) temperature (K2), (c) specific humidity

[(g kg21)2], and (e) relative humidity (%2) for each dataset. Themeans of the three 3CH estimates are shown by

solid lines and the standard deviations of the three estimates [Eq. (9)] are indicated by shading: ERA5 (blue),

HAMSR (red), HWRF (green), and DROP (orange). (b),(d),(f) As in (a), (c), and (e), but for the mean esti-

mated 3CH standard deviation and spread for temperature (K), specific humidity (g kg21), and relative hu-

midity (%), with HAMSR-NC (all scan angles, not bias corrected; purple) and HAMSR-30 (scan angles less

than or equal to 308, not bias corrected; gray) included.
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FIG. 8. As in Fig. 7, but for datasets normalized by ERA5 sample means.
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For normalized relative humidity (Fig. 8f), the estimated

error profiles are similar to those of normalized specific hu-

midity with largest errors in the 200 to 500 hPa levels. HAMSR

again shows the largest errors.

c. Comparison with estimated/known measurement errors

In this section we compare the results of the estimated 3CH

error STD to other estimates of errors of these datasets.

Only two studies, to our knowledge, have evaluated the

accuracy of the HAMSR retrievals. Brown et al. (2007) com-

pared the retrievals with nearby dropsondes that were released

from the DC-8 aircraft during the NASA African Monsoon

Multidisciplinary Analyses campaign (Zipser et al. 2009) in

2006. Comparison with dropsondes on 8 September 2006

(Fig. 1 in Brown et al. 2007) indicated most temperature

retrievals were within 2 K of dropsonde measurements, but

at some levels differences were as high as 5 K. Absolute

humidity from HAMSR was generally within 50% of the

dropsonde observations, which is roughly equivalent to a

specific humidity difference of 50%.

Brown et al. (2011) compared a retrieved temperature

profile to one dropsonde observation in the eye of Hurricane

Erin. In this one comparison, differences in the retrieved

temperature were generally less than 1K, but as high as 3–5K

at 2 km and from 12 to 18 km. These prior studies were limited

by the number of collocated dropsondes used, but their esti-

mates of temperature errors in the range of 2–5K and specific

humidity of up to 50% are consistent with the 3CH estimates

of error STD shown in Fig. 7.

Prior studies estimating the accuracy of the GH dropsondes

include Hock and Franklin (1999) and Wick et al. (2018b).

Hock and Franklin (1999) estimated the accuracy of the

dropsonde temperature observations by examining the mea-

sured temperature at the melting level during precipitation. Of

34 comparisons during the Fronts and Atlantic Storm-Track

Experiment (Joly et al. 1999), the RMS error was 0.22K with a

bias of 0.09K, within the estimated accuracy of the instrument

(0.2K in Table 2 of Hock and Franklin, 1999).

Wick et al. (2018b) compared GH dropsondes with drop-

sondes released from the G-IV during NASA’s HS3 campaign

(Braun et al. 2016). The dropsondes were deployed over the

Gulf ofMexico in 2011 and 2014 during clear to scattered cloud

conditions, and were predominately within 2min and 5 km of

each other. Of the 27 collocated dropsondes in 2011 and 15 in

2014, temperature measurements showed mean agreement

to within 0.1 K (Fig. 7a in Wick et al. 2018b) and an STD of

around 0.4 K. Relative humidity observations showed amean

agreement generally within 5% and an STD of differences

largely less than 10% (Fig. 7b in Wick et al. 2018b). These

differences are similar to the estimated error in relative hu-

midity of less than 5% shown in Table 3 of Hock and

Franklin (1999).

The 3CH results in this paper indicate an error STD of the

dropsonde temperature between roughly 0.5 and 0.8K over all

pressure levels (Fig. 7b), which are somewhat higher than the

estimates ofWick et al. (2018b) and Hock and Franklin (1999).

For relative humidity, our 3CH estimates point to a dropsonde

error STD of 5%–10% (Fig. 7f), in good agreement with the

10% STD relative to G-IV dropsondes in Wick et al. (2018b)

and about twice the estimated errors of Hock and Franklin

(1999). The somewhat higher 3CH error estimates are likely

caused by their inclusion of representativeness errors (e.g.,

Anthes and Rieckh 2018), as the dropsondes are essentially

measuring point values while the ERA5 and HWRF models

are representing averages over the models’ grid volumes, and

HAMSR is estimating temperature and humidity over layers of

approximately 2 km in depth.

Uncertainty estimates of the ERA5 dataset are provided by

the ensemble spread of the ERA5 system. ERA5 includes a

reduced resolution (;60 km in the horizontal) 10-member

ensemble at a 3-h temporal resolution. The ensemble spread

is given as a function of time, latitude, longitude, and the 37

pressure levels (Hersbach et al. 2018). These estimates account for

the uncertainty in the observations, model physical parameteri-

zations, and random, but not systematic, errors. Using the pro-

vided ensemble spread at each analysis time (every 3h), we

computed amean andSTDof the ensemble spreadwhen closest in

time and space to the 533 collocations used in the 3CH estimates.

Figure 9 shows the mean and STD of the ensemble uncer-

tainty for temperature, specific and relative humidity together

with our 3CH error STD. The mean ensemble uncertainties of

all three variables are somewhat less than the mean 3CH error

estimates, but the shapes of the profiles are similar and the

STD of the two methods of estimating uncertainty overlap at

most levels. The slightly smaller ERA5 ensemble uncertainties

may be because the ERA5 ensemble spread does not account

for all the uncertainties in the ERA5 dataset (Copernicus

Climate Change Service 2017).

We did not find any independent estimates of the error

variances or STDs in the temperature, specific humidity, or

relative humidity of HWRF forecasts to compare directly to

our results in this work.

5. Conclusions

In this study, we used the 3CH method to estimate random

error variances and STDs for four datasets in the environment

of TCs: ERA5, HWRF analysis, GH dropsondes (DROP), and

GH HAMSR retrievals. Prior to this research, no compre-

hensive study has been done to accurately characterize the

error variances and STD of the HAMSR retrievals or to

compare them with other datasets. Our study was carried out

using data from the 2016 SHOUT season, when the GH sam-

pled TCs Gaston, Hermine, Karl, and Matthew. A total of 533

collocated vertical profiles of the four datasets were found over

this time period and used to calculate error estimates.

ERA5, HWRF, and the GH dropsondes all have similar

temperature and humidity (specific and relative) errors, with

ERA5 having slightly smaller errors then the other datasets.

Throughout most of the troposphere, the error STDs of tem-

perature and specific humidity are less than 0.8K and 1.0 g kg21,

respectively. The estimated error STDs of relative humidity in-

crease from less than 5% near the surface to between 10% and

20% in the upper troposphere.

The close agreement of the dropsonde errors with those of

ERA5 and HWRF validates the high accuracy of the GH
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dropsondes. The estimated error STDs of the dropsondes for

temperature (0.5–0.8K) and humidity (5%–10%) at all pres-

sure levels were found to be similar, but somewhat larger than

earlier estimates, likely due to the inclusion of representa-

tiveness errors in the 3CH estimates.

HAMSR has larger estimated errors than the other three

datasets. The estimated error STDs of temperature and specific

humidity in the lower troposphere for the bias-corrected

HAMSR data (which include all scan angles) vary between

1.5 and 2.0K and between 1.5 and 2.5 g kg21, respectively. The

HAMSR error STD of relative humidity increases from ap-

proximately 10% in the lower troposphere to 30% in the

upper troposphere. The larger errors with respect to the other

datasets is likely a result of several aspects. First, HAMSR is

remotely sensing the atmosphere, measuring atmospheric

brightness temperature. Errors can arise from the retrieval of

atmospheric variables, and can be larger when under heavy

precipitation. In addition, HAMSR’s weighting functions

peak only over ;8 levels: 1000, 750, 400, 250, 150, 90, 80, and

40 hPa (Brown et al. 2007). Thus HAMSR could have larger

errors in part due to its lower vertical resolution and larger

vertical representativeness errors than the other datasets.

We also computed estimated errors associated with the un-

correctedHAMSR data and found that the bias-corrected data

had smaller errors. We also found that the HAMSR data with

scan angles restricted to#308weremore accurate than the data

that included all scan angles.

We compared our estimated error STDs of ERA5 using the

ERA5 ensemble spread data nearest the 533 collocated pro-

files. Although the mean ensemble uncertainty was less than

our estimated error STDs of temperature and specific and

relative humidity, possibly because the ERA5 ensemble spread

does not account for all the uncertainties in the reanalysis

dataset, the STD of the two methods overlapped at most

pressure levels.
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